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Reply to comments  

We are pleased to reply to the preceding comments of 
Gaymans and Dijkstra, and take this opportunity to 
explain more fully and show more clearly the validity of 
our percolation model for brittle-tough transition in 
polymer blends ~. 

PERCOLATION THRESHOLD 

As stated in our paper ~, we distinguish two thresholds: 
the onset of brittle-tough transition ~bbo (i.e. the brittle- 
tough threshold, which is a mechanical property) and 
the onset of connectivity of stress volumes ~bso (i.e. the 
percolation threshold, which is a geometrical property). 
The two thresholds may or may not exactly coincide with 
each other, because brittle-tough transition may require 
a certain multiple-connectivity density of stress volumes 
above what is attained at the percolation threshold. This 
is a special feature of the toughness phenomenon, as we 
explicitly discussed before ~. 

To be general, we thus allow a small difference 6 
between the two thresholds1: 

Since the degree of connectivity increases enormously 
beyond the percolation threshold, the 6 should be 
relatively small. Furthermore, the 6 permits us to account 
for some additional physical realities, discussed below. 

In our model, rubber particles are assumed to be 
randomly distributed. In real samples however, the 
particle distribution may not be completely random. This 
may occur, for instance, because of the method used to 
prepare the samples, or because of interparticle attraction 
which may cause the formation of certain ordered or 
network structures. 

Our samples have similar chemical compositions and 
were prepared by the same method. Therefore, the 6 
should be a small constant. More importantly, the 6 also 
allows us to examine the critical scaling behaviour within 
as well as above the brittle-tough transition zone, i.e. 
to include the brittle data below ~bb¢ and above ~b,¢, 
further discussed later. 

The exact level of multiple-connectivity density required 
for the onset of brittle-tough transition is unknown 
a priori at this time. The 6 may be treated as an adjustable 
parameter, or simply set as 6 =0  (i.e. t~bc = ~b,¢). In either 
case, the essence of our model is unaffected. However, 
we prefer the 6 to be a small constant, chosen so that 
one or two brittle data just below the brittle-tough 
transition at each constant rubber volume fraction ~b r are 
above the percolation threshold. As mentioned before, 
this will enable us to examine the critical scaling 
behaviour within, as well as above the brittle-tough 
transition zone. This is particularly important, since the 
brittle-tough transition region is our primary interest. 
We thus let 6 = 0.1, which meets all the above physical 
requirements. 

This choice of 6 value gives us four brittle data below 
~bb~ but above ~o in our nylon/rubber blends. Brittle 
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Figure 1 Notched Izod toughness G versus excess critical stress 
volume fraction (q~,-~bs~) at constant rubber volume fraction ~b~ for 
nylon-66/rubber blends. A ,  ~b~=0.306; O,  ~br=0.189; 1--1, q~,=0.128. 
The data points marked as a, b, c, d are the corrected tough data 
between ~bb, and ~b,¢; see text and reference 1 for details 

failure occurs below ~bbc, since not all stress volumes can 
yield here 1. This is because the levels of connectivity 
density required for tough behaviour are not reached 
below ~bbc. The fracture mechanisms below and above 
~b¢ are different. Therefore, to examine the critical scaling 
law, we corrected the toughness of these four brittle data 
to correspond to the case where all stress volumes yield, 
i.e. tough behaviour, discussed before 1. The four corrected 
brittle data are marked as a, b, c and d in our present 
Figures 1 and 2. 

Thus, equation (4) of our previous paper ~ is more 
explicitly written as 

~ro(So/do) 3 = ~so + 6 

For nylon/rubber blends, we thus used experimental data 
for ~bro, Z~ and de in the above relation to obtain tkb~ ~ 0.52 
and ~bs¢'-" 0.42, as we reported before ~. 

As explained below, interestingly our choice of 6 gives 
the critical exponent g for brittle-tough transition as 
g = 0.40-0.45, which is practically equal to the theoretical 
fl exponent for site and continuum percolations ~. 

Qualitatively, it is immaterial whether ~bso is 0.52 
(for 6=0)  or 0.42 (for 6=0.1). The critical threshold 
values are known to be different for different physical 
properties 2-7. The important points are: first, the ~b~c 
values are constant for the samples in question; and 
second, the ~b~c values are physically reasonable, i.e. in 
the present case, between the two limiting values, 0.36 
(for monodisperse particles) and 0.65 (for close-packed 
spheres). As shown in Figure 5 of our previous paper 1, 
our ~bso values are indeed constant and well within the 
acceptable range of 0.364).65. 

Therefore, the concept of percolation threshold is valid 
in interpreting the brittle-tough transition. 

CRITICAL SCALING LAW 

If brittle-tough transition is a percolation phenomenon, 
the toughness data in the vicinity above the percolation 
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Normalized notched Izod toughness (G/A) versus excess 
critical stress volume fraction ($, - ~b,c ) for nylon-66/rubber  blends. A ,  
~br=0.306; O ,  ~br=0.189; I'-1, q~,=0.128. The data  points marked  as 
a, b, c, d are the corrected data  between ~bbc and ~bsc; see Figure 1 

threshold should obey 1 

G = A ( ¢ , -  ¢,o)" 

where G is the toughness, A the prefactor, ~b,-~b,~ the 
excess critical stress volume fraction, and g the critical 
exponent. 

We hasten to caution that the above scaling law is 
valid only in the immediate vicinity above the percolation 
threshold, and must not be used indiscriminately without 
regard to mechanical saturation. In the regions sufficiently 
far above the brittle-tough transition, the toughness will 
become independent of stress-volume fraction, because 
of the mechanical saturation. This will occur when the 
stress volumes occupy the entire matrix phase, and so 
new stress volumes cannot be created from 'virgin' matrix 
by changing the particle size or the rubber volume 
fraction. Any apparent increase of stress-volume fraction 
arises from the overlapping of stress volumes, rather than 
from the creation of new stress volumes from the virgin 
matrix. Therefore, the toughness becomes independent of 
stress-volume fraction in this region. These mechanically 
saturated data should not be used to fit the critical scaling 
law. 

The mechanical saturation appears to be reached in 
the few (3 or 4) data points having small particle sizes 
(d< ~0.52#m) in the q~=0.306 series, as can be seen in 
the upper left region of Figure 1 in our previous paper 1. 
They should not be used to fit the critical scaling law, 
as discussed above. 

It is known that both the modulus and the yield stress 
of nylon/rubber blends are dependent on rubber volume 
fraction ~br, but independent of rubber particle size, as 
ably reported elsewhere by Borggreve et al. 8. Thus, the 
prefactor A varies with ~br, but is constant for a series of 
samples with constant ~b r. 

Therefore, we note that for a series of samples with 
constant ~b~, a straight line should be obtained, when 
log G is plotted versus log(~b~-q~s~). On the other hand, 

when several series of samples with different ~ r  values 
are plotted, a family of parallel straight lines should be 
obtained. Each line corresponds to a given ~br value, and 
displaced from each other by A(log A). This is indeed 
found to be true, as shown in our present Figure 1. The 
lines are parallel well within experimental scatter. 

Interestingly, similar to our present Figure 1, Gaymans 
and Dijkstra also obtained parallel straight lines at 
constant ~b r values, i.e. the solid lines in their plot. But, 
their slopes are smaller than ours, because of two 
shortcomings in their plot, discussed below. Qualitatively 
however, the magnitude of the slope is unimportant. The 
important aspect is that parallel straight lines are 
obtained at constant ~r values. Therefore, their plot 
actually confirms the validity of our percolation model. 

There are two shortcomings in the way Gaymans and 
Dijkstra plotted our data, which gave them smaller 
slopes. First, they did not consider the effect of mechanical 
saturation. In their plot, the three or four data points at 
the right-hand end of the solid line for q~r=0.306 are 
independent of particle size, and so are mechanically 
saturated. These few data points should not have been 
used. 

Second, they did not include the brittle-tough transition 
zone in their constant ~r plots (shown as solid lines). 
They omitted the four corrected brittle data between ~bbc 
and ~bsc. As already mentioned, these four corrected 
brittle data are marked a, b, c and d in our present Figures 
I and 2. In other words, their constant q~ lines do not 
cover the brittle-tough transition zone, which is the most 
important region of interest. Instead, for these four data 
points, they drew a smoothed broken line without 
showing the data points in their plot. These four data 
points have different q~r values, and are moreover too 
few to be statistically meaningful. Despite this, they 
compared their solid lines with the broken line. Such a 
comparison is improper. 

On the other hand, we note that when normalized 
toughness (G/A) is plotted versus (q~s-~bs¢) bilogarith- 
mically, the family of straight lines should superimpose 
to form a single universal straight line for a given system. 
This is indeed true, as shown below. 

As already shown in Figure 1, we first plot all the data 
above the percolation threshold (including the four 
corrected brittle data) at constant ~br to obtain by least 
squares the A value at each constant q~. These A values 
are then used to obtain the normalized toughness (G/A). 

Next, as shown in Figure 2, we plot the normalized 
toughness ( G / A ) versus ( ~ - q~sc) bilogarithmically. This 
indeed gives a single universal straight line for the present 
system. This confirms the universality of the critical 
scaling law. The critical exponent is found to be 
g = 0.40_ 0.02. 

Note that the scatter of data (see Figure I) is such that 
it is statistically permissible to construct a single straight 
line in the log G versus log(~b~-~bJ plot using all the 
tough data (up to mechanical saturation) regardless of 
the q~ values, as we did previously 1. This simplified plot 
gave g = 0.45_ 0.06, which is practically identical to the 
present value of g=0.40_0.02 obtained by the more 
strict normalized plot. 

It is known that different physical properties have 
different critical exponents, depending on the relationship 
between the geometrical connectivity and the physical 
property in question. For instance, the critical exponent 
is 0.40~0.44 for site and continuum percolations 6'7, 
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~ 1.7 for conductivity 2'3, ~ 3.8 for Young's modulus 4'5 
and ~ 0.32 for magnetic induction 6. Our critical exponent 
g pertains to the toughness, and is thus a mechanical 
exponent, not necessarily equal to the fl exponent 
(0.40-0.44) for site and continuum percolations. 

However, as already mentioned, it is interesting to note 
that our g exponent (0.40-0.45) is practically equal to 
the fl exponent (0.40-0.44) for site and continuum 
percolations 1. This suggests a direct proportionality 
between the toughness above the brittle-tough transition 
(up to mechanical saturation) and the connectivity 
density of the stress volumes. We emphasize here again 
that the similarity of g and fl values is not our primary 
concern. The important aspect is that the functional form 
of the critical scaling law is universal with a constant 
critical exponent, whatever its numerical value. 

Therefore, the brittle-tough transition is well described 
by the critical scaling power law. 

CONCLUSIONS 

We have explained in greater detail, and shown more 
clearly that the brittle-tough transition in nylon/rubber 
blends is well described by our percolation model. We 
have also shown that the plot of Gaymans and Dijkstra 
in their preceding comments actually confirms the 
validity of our percolation model. 
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